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Abstract

We present an algorithm for efficiently testing Linear Temporal L¢,gic (LTL) formulae on finite ex-

ecution traces. The standard models of LTL are infinite traces, reflecting the behavior of reactive and

concurrent systems which conceptually may be continuously alive. In most past applications of LTL,

theorem provers and model checkers have been used to formally prove that down-scaled models satis_"

such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applica-

tions. Such tests correspond to analyzing the conformance of finite traces against LTL formulae. We

first describe what it means for a finite trace to satisfy an LTL property. We then suggest an optimized

algorithm b,xsed on transforming LTL formulae. The work is done using the Maude rewriting system,

which turns out to provide a perfect notation and an efficient rewriting engine for performing these

experiments.

1 Introduction

Linear Temporal Logic (LTL), introduced by Pnueli in 1977 [31], is a logic for specifying temporal properties

about reactive and concurrent systems. The models of LTL are infinite execution traces, reflecting the

behavior of such systems as ideally always being ready to respond to requests, operating systems being

an example. LTL has since then typically been used for specifying concurrent and interactive down-scaled

models of real systems, such that fully formal program proofs could subsequently be carried out, for example

using theorem provers [23, 18] or model checkers [21, 20]. However, such formal proof techniques are usually

not scalable to real sized systems without an extra effort to abstract the system manually to a model which

is then analyzed. Model checking of programs has received an increased attention from the formal methods

community within the last couple of years. Several systems have emerged that can model check source code,

such as Java, C and C++ directly (typically subsets of these languages) [22, 35, 9, 2, 25, 30]. However, these

techniques will only work if abstraction is applied to the code [8, 25, 36]. Alternatives to state recording

model checking have also been tried, such as VeriSoft and similar tools [13, 34], which perform stateless model

checking of C++ programs, and ESC [10], which uses a combination of static analysis and theorem proving

to analyze Modula3 programs and recently also Java programs. We believe these techniques will show useful

for targeted verification. However, although these systems provide very high confidence in the results they

provide, they scale less well. One also needs techniques that can be applied instantly and in a completely



2. I Maude

M;u_,l, + [6+ :L l. :3] t_, :_ fl.,,,,lv ,li_tt.tt,,m,,t hi_h-p°'rh,rm;mce swtetn in the 013.I [16] aig+,braic sp,'cil'ication

family. +_ttl,ln,rtin g b,_th rewriting logic [2,"5+]and ntentl,er'+hip +'<luati<mal logic [29] B,,<:aus,' <>f it..+ efficient

r+,wririxt_, +.t_tm+. abl,, to +,XeClttl, Hp to ;_ tnillion rewriting steps per secolld on curt'c'tltly start,lard har, tware
<'<Ulfigln';tt.i<ms. ;_.ll,l h,+'c;,ItS,' of its uleta.languag_ featllrl-,s based on reflection [7]..Mattile t;ll'tlS Otlt to be an

excellent tool r.o create executabh.' environnlents for various Logics, tnodels of computation, theoreln provers,

am l ewm prograntmmg langua.ges, l+Ve were delighted to notice how easily we couhl implement and efficiently

validate our algorithms for testing LTL formulae on finite event traces m Maude, admittedly a tedious task

it+. C++ or .lava. am[ hence decided to use .Maude at least for the prototyping stage of our runtime check

algorithms.

We very briefly and mformally remind some of Maude's features, referring the interested reader to the

manuals [4, .5] for more details. We'll restrict our attention to only Maude's module system and order-sorted

ectuatiotml logic since we don't need more for this paper. Maude supports modularization in the CLEAR

[1] and OB.J [16] style of parameterized programming, with highly generic and reusable modules. There are

various kinds of modules, but we are using only functional modules which follow the pattern "fmod <name>

"is <body> endfm". The body of a functional module consists of a collection of declarations, of which we are

using importing, sorts, subsorts, operations, variables and equations, usually in this order. We'll describe all

these "+on the fly", as they appear in the paper.

2.2 Propositional Calculus

This subsection presents a decision procedure for propositional calculus due to Hsiang [26] which makes high

use of associative/commutative a,,doms. It provides the usual truth constants (true and false) together

with a potentially infinite set of propositional variables, and also the usual connectives _/\_ (conjunction).

++ (exclusive disjunction), _\/_ (disjunctiont, ! (negation),->_(implication), and _<->(equivalence).

The procedure reduces tautology formulae to the constant true and all the others to some canonical form

modulo associativity and commutativity.

The first algebraic specification code for this reduction procedure seems to have originally appeared in

[15] in the language OBJ1. and then its OBJ3 code appeared in [16]. Below we give its obvious translation to

Maude, noticing that Hsiang [26] showed that this rewriting system modulo associativity and commutativity

is Church-Rosser and terminates. The Maude team was probably also inspired by this procedure, since

the buittin B00L module is very similar, the main difference being that B00L does not allow distinguishable

identifiers as boolean formulae and that the connectives are actually spelled, i.e.. _/\_ is replaced by _and.

++ by xor_. _-> by _implies_+ etc.

fmod PKOPOSITIONAL-CALCULUS is

protecting QID .
sort Formula .

subsort Oid< Formula .

*** Constructors ***

ops true false : -> Formula .

op _/\_ : Formula Formula -> Formula [assoc co.v. prec 15]

op _++_ : Formula Formula -> Formula [assoc co-.- prec IT]

vats X Y Z : Formula .

eq true /\ I = X .

eq false /\ X = false .

eq X /\ X " l .

eq false ++ X = X .

eq X ++ X = false .

eq I /\ (Y ++ Z) = X /\ g ++ l /\ Z .

*** Derived operators ,,t,,

op _\/_ : Formula Formula -> Formula [assoc prec 19] .

op !_ : Formula -> Formula [prec 13]

op _->_ : Formula Formula -> Formula [prec 21]

op _<->_ : Formula Formula -> Formula [prec 23] .
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3 Finite Trace Linear Temporal Logic

As alr_,alIy .xplamec[. our _oa[ is m develop a fr_un_,work fl)r testing soft, ware systems Ilsing temporal logic.

Tests ,tr. p_,rformetl on finite execution traces amt w,, therefore tle,_[ to formalize what it n_e;ms for a

fimte tr;tc,: to satisfy an UFL formlda. First we present a. senl;mt.ics of LTL on finite traces using standar_l

mathemati,zd notatitm. Then we present a specification in ,_[itttde of ;t finite trace semantics. Whereas the

former senmnties uses universal and existential quantification, the second M;tude specification is defined using

recursiw, _ definitions that have a straightforward operational rewriting interpretation amI which therefore can

be executed.

3.1 Finite Trace Semantics

In this subsection we present a semantics of LTL on finite traces. We will regard a trace _ a finite sequence

of events emitted from the program that we want to observe. Such ewmts could for example indicate when

variables are written to. For example, the event write(x.v) would mean that "'x is _signed the value v".

Note that this view is shghtIy different from the traditional view where a trace is a sequence of program

states, each state denoting the set of propositions that hold at that state. Our view is consistent with our

goal to define an LTL observer as a process that is detached from the program to be observed, receiving only

observed events. We shall abstract away from the concrete contents of events and just define events as a set

of distinguishable identifiers. The following Maude module formalizes this idea:

fmod EVENT is

protecting 01D •
sort Event

subsort Qid < Event .

endfm

It introduces the sort Event and states that the sort Oid of distinguishable identifiersis a subsort of Event.

A trace is now a finitelistof events. This is modeled by the following Maude specification:

fmod TRACE is

extending EVENT .

sort Trace .

op end : -> Trace .

op __ : Event Trace -> Trace [prec 25] .

endfm

It introduces the sort Trace and the constructors end for the empty trace, and juxtaposition of an event

"e" and a trace "t", as in "e t", for creating a new trace. We shall outline the finitetrace LTL semantics

using standard mathematical notation rather than Maude notation. Assume two partial functions defined for

nonempty traces head :Trace -+ Event and tail:Trace -+ Trace for taking the head and tailrespectively of

a trace, and a total function length returning the length of a finitetrace. That is,head(e t) = e, tail(e t) = t,

and length(end) = 0 and length(e t) = 1 + length(t). Assume further for any trace t that tz for some natural

number i denotes the suffix trace that starts at position i, with positions starting at I. The satisfaction

relation _ C_ Trace x Formula defines when a trace t satisfiesa formula f, written t _ f, and is defined

inductively over the structure of the formulae as follows, where P is any quoted identifierand X and Y are

any formulae:

t_P

t = true

t = false

t=x /\

t=X++Y

t = []X

t = <>X

t=XOY

t=oX

iff t # end and head(t) = P,

iff true,

iff false,
iff t _ Xandt_ Y,

iff t_Xxort_V,

iff (g i < length(t)) t, _ X

iff (] i <_ length(t)) ti _ X

iff (3 i < length(t)) (ti _ Y and (V j < i) tj _ X)

iff t # end and tail(t) _ X



'a 'b 'a 'b 'a 'c 'a 'a 'b 'g 'f 'h 'c 'b 'a end .

eq formula[ = [] ('b -> <> 'c)

eq formula2 = <> (? formula[) .

eq formula3 = [] ((('a /\ o'b) \/ ('b /\ o'a)) U ('a /\ o'c))

endfm

wher,- the three vertical dots in trace3 stand for I(}0 repetitions of th(: previous sequence of events _, and
then try various combinations:

red tracel

red tracel

red trace2

red trace2

red trace3

red trace3

red trace3

= formulal . *,*> should be: false

= formula2 . **,> should be: true

= formulal **,> should be: false

= formula2 . *,*> should be: true

= formulal )**> should be: false

= formula3 . ***> should be: false

= formula2 . *,*> should be: true

The algorithm to test LTL formulae on traces presented above does nothing else but blindly follow the

mathematical definition of satisfaction (so it is correct) and even runs reasonably fast for relatively small

traces. For example, it takes less than 10.000 rewriting steps (a few milliseconds) to reduce any of the first

4 goals involving only traces of 15 events. Unfortunately this algorithm doesn't seem to be tractable for

large event traces, even if run on very fast and large memory machines. That's because the number of

atoms of the form T I= X m the boolean formula to be reduced keeps growing exponentially: besides that.

the boolean reduction engine is itself intractable (it works modulo associativitv and commutativity). As a

practical example, it took Maude 8 million rewriting steps to reduce the fifth expression above. 53 million
steps for the sixth, and it couldn't finish the last one in 10 hours.

Since the event traces generated by an executing program can easily be larger than 5.000 events, the

trivial algorithm above can not be used in real practical situations.

4 An Efficient Rewriting Algorithm

In this section we shall present a more efficient rewriting semantics. First we shall motivate the design choice.

Then follows the algorithm, and finally we prove that the new semantics is equivalent to the one given in
the previous section.

4.1 Motivation

The operational Maude semantics of LTL that was presented in the previous section is not efficient due to

the fact that the traces are carried around in several subexpressions. For example, the semantics of the until

operator is given as follows:

eq g T [= X U g = g T I= Y or g T l= X and T l= X U Y .

Vv'ecan see that the traceT occurs inthree subexpressions.A more efficientalgorithm ispresented below,

which isbased on the idea of consuming the eventsin the trace,one by one,and updating a data structure,

say of type D, corresponding to the effectofthe event on the valueof the formula. Hence, we should defne

a function trans/orm : Event x D -+ D. Our decisionto writean operationalMaude semantics thisway was

motivated by an attempt to program such an algorithm in Java, where such a solutionwould be the most

natund. As itturns out, italsoyieldsa more efficientrewritingsystem.

Vv'ehave considered two approaches: an automata approach and a ]ormula approach. In the automata

approach one could translatethe formula intoan automaton, and then take the synchronized product of the

4The three vertical dots are not a Maude feature.



A pr+,p,,siti_ma[ Uh!atifi,.r is tr;m_fc,r,tl,',l to t:rue if th,_ ,,vent ,',iu;tls th;Lt pro[_osit.iozt, oth,.rwi._+' false. The

r,do t',,r th,. temp,,ral opf.rator [] X _h<,eshl b,. r,,;u[ ;us folh,w'< th,, t'orn,,da X uu1_r hohl now (X(E}) an<l also

tit th,' fur,it',' ( [] X). Th+' _itb-expre.s._ion X(E} represents the formula+ that must hol¢[ for tht. r+'st or" th+, trace

for × _<, h<,hl aow A._ art oxa.tnple, <:on._ider t,h,e fornmla l']<>P where P is a pro[><>sitional h[entifier+ Thi+

formttla ;q>plivd u> tit++' ,listin<:t proposition Q yields the following rewritings:

([]<>P)(O} => []<>P /\ (<>P){Q}

=> []<>P /\ (<>P \/ P{Q})

=> []<>P /\ (<>P \/ false)

=> []<>p /\ <>P

As we can see, the property <>P ha.s been spawned off as a consequence of the Q event, in addition to the

original formula that still h;_ to hold due to the ""[]" operator

Note that these rules spell out the semantics of each temporal operator. An alternative solution would

be to define some operators in terms of others, a,s is typically the case in the standard semantics for LTL. For

example, we could introduce an equation of the form: <>X = true U X, and then eliminate the rewriting

rule for <>X in the above module. Interestingly enough this turns out to be less efficient, a result that we

had not quite expected since propositional logic rewriting seems to benefit from rewriting into normal forms

as denronstrated with the module PROPOSITIONAL-CALCULUS described in Subsection 2.2.

4.3 Revised Semantics

Before we complete the definition of our fast algorithm to evaluate formulae on finite traces, we need to

introduce a new operation, eval, which basically "evaluates" to either true or false a formula as it _s. that

is. without using any information about the trace. This operation is needed when all the events in the trace

are consumed, and basically spells out what the semantics of a formula is on all empty trace.

fmod EVAL is

protecting LINEAK-TEMPOKAL-LOGIC .

op eval : Formula -> Oool .

var P : Qid . vars X Y : Formula •

eq eval(P) = false .

eq eval(true) = true .

eq eval(false) = false .

eq eval(X /\ Y) = eval(X) and eval(Y) .

eq eval(X ++ Y) = eval(X) xor eval(Y) .

eq eval([] X) = true .

eq eval(<> X) = eval(X) .

eq eval(l U Y) = eval(Y) .

eq eval(o l) = false .

endfm

The eval function can be seen as a morphism of logics, which maps all atomic propositions to false. The

intuition here is that at the end of a trace, no propositions hold. The module in particular explains the

semantics of the temporal operators on the empty trace. Now, the revised semantics of finite trace linear

temporal logic can be implemented as follows:

fmod FINITE-TRACE-SEMANTICS-REVISED is

protecting CONSUME-EVENT .

protecting TRACE .

protecting EVAL .

op_ 1- _ : Trace Formula-> Bool [prec 30]

var E : Event . var T : Trace . var X : Formula .

eq end l- X " eval(X) .

eq E T I- l • T I- X {E} .
endfm

9



fmod PROOF-OF-LEMMAS ts

extending FINITE-TRACE-SEMANTICS .

extendzng FINITE-TRACE-SEMANTICS-REVISED

op e : -> Event opt : -> Trace .

ops p q : -> Old . ops y z : -> Formula .

eq end l= y = end l- y .

eq end )= z = end ]- z .

eq e t I = y = t I= y {e} .

eq e t I = z = t I = z {e} .
endfm

It is worth reminding the reader at this stage that the functional modules in Maude have initial semantics.

so proo_ by" induction are valid. In particular, notice that an event can only be a specialized identifier since

there are no other operations generating events. Before proceeding further, the reader should be aware of

the operational semantics of the operation _==, namely that the two argument terms are first reduced to

their normal forms which are then compared syntactically (but modulo associativity and commutativity); it

returns true if and only if the two normal forms are equal. Therefore, the answer true means that the two

terms are indeed semantically equal, while false only means that they couldn't be proved equal: they can

still be equal.

red (end = p == end l- p) and

(end = true == end I- true) and

(end = false == end I- false) and

(end = y /\ z == end l- y /\ z) and

(end = y ++ z == end ]- y ++ z) and

(end = [] y == end l- [] y) and

(end = <> y == end I- <> y) and

(end ]= y U z == end - y U z) and

(end I= o y == end - o y) and

(p _ I = p == t = p {p}) and

(q t I= p == t = p {q}) and

(e t I= true == t = true {e}) and

(e t I= false == t = false {e}) and

(e t I= y /\ z == t I= (y /\ z) {e}) and

(e t I = y ++ z == t I = (y ++ z) {e}) and

(e t I= [] y == t I= ([] y) {e}) and

(e t [= <> y == t [= (<> y) {e}) and

(e t I= y U z == t ]= (y U z) {e}) and

(e t l= o y == t [= (o y) {e}) ***> should be: true

The returned answer is indeed true; it took Maude 129 reductions to prove these lemmas. Notice the case

analysis on the event e at the beginning of the second ]emma's proof. Therefore, one can safely add now

these lemmas as follows:

fmod LEMMAS is

protecting FINITE-TRACE-SEMANTICS

protecting FINITE-TRACE-SEMANTICS-REVISED .
vat E : Event . vat T : Trace . vat I : Formula .

eq end ]= X - end I- X .

eq E T I = X - T I = X {E} .
endfm

%Ve can now proceed to the proof of the theorem, by induction on traces. More precisely, we show:

'P(end), and

T'(T) implies P(E T), for all events E and traces T,

where 7_(T) is the predicate "for all formulas X, T I= X iff T I- X". This induction schema can be easily

formMized in Maude as follows:
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